Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jan Moncol, ${ }^{\text {a* }}$ Zuzana Púčeková, ${ }^{\text {a }}$ Tadeusz Lis ${ }^{\text {b }}$ and Dušan Valigura ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Inorganic Chemistry, Slovak Technical University, Radlinského 9, SK-812 37, Bratislava, Slovakia, and ${ }^{\mathbf{b}}$ Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie St., 50383 Wrocław, Poland

Correspondence e-mail: jan.moncol@stuba.sk

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.083$
Data-to-parameter ratio $=24.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
An enriched hydrogen-bond system in trans-diaquabis(N, N-diethylnicotinamide- κN)-bis(3-methoxysalicylato-кO)copper(II) dihydrate

In the molecule of the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{4}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the Cu^{2+} cation lies on an inversion centre. It is coordinated by two pairs of O atoms of 3-methoxysalicylate anions and water molecules, and one pair of pyridine N atoms of N, N-diethylnicotinamide ligands, forming a tetragonal-bipyramidal coordination polyhedron. The two water molecules of solvation are linked to the complex molecule by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. A $\pi-\pi$ stacking interaction is also observed between symmetry-related pyridine rings.

Comment

The title compound, (I), was prepared as part of studies of the coordination chemistry of the N, N-diethylnicotinamide ligand. It exhibits a centre of symmetry and the coordination polyhedron around the Cu atom is an elongated tetragonal bipyramid (Fig. 1). The tetragonal plane is built up by a pair of monodentate 3-methoxysalicylate anions using carboxyl O atoms and by a pair of neutral N, N-diethylnicotinamide molecules using pyridine ring N atoms, in trans positions. The axial positions are occupied by water molecules (Table 1).

(I)

The coordinated water H atoms are linked to the uncoordinated carboxyl O 4 atoms of the 3-methoxysalicylate anions by $\mathrm{O} 1-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O} 4$ intramolecular hydrogen bonds (Table 2), creating six-membered metallocyclic rings. O5-H5O . O O4 intramolecular hydrogen bonds, including hydroxyl H atoms and the uncoordinated carboxyl O4 atoms of the 3-methoxysalicylate anions (Table 2), likewise form six-membered rings, thus stabilizing the molecular structure.

The uncoordinated water molecules are linked to the $[\mathrm{Cu}(3-$ $\mathrm{MeOsal})_{2}(\text { denia })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$] molecule [where 3-MeOsal is the 3-

Received 25 January 2006
Accepted 30 January 2006
\qquad

Figure 1
Perspective view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2
The crystal packing of (I), viewed along the a axis. Dashed lines indicate $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted.
methoxysalicylate anion $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{4}^{-}\right)$and denia is N, N diethylnicotinamide $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\right)$] by strong intermolecular hydrogen bonds (Table 2), which form two-dimensional sheets parallel to the (011) plane (Fig. 2). The H atoms of the coordinated water molecules are connected to O 7 atoms of the uncoordinated water molecules by $\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} \cdots \mathrm{O} 7$ intermolecular hydrogen bonds (Table 2). One of the uncoordinated water H atom is linked to carboxamide atom O 2 of the N, N-diethylnicotinamide by an $\mathrm{O} 7-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O} 2$ intermolecular hydrogen bond (Table 2). The other uncoordinated water H atom is linked to hydroxyl atom $\mathrm{O} 5^{\mathrm{i}}$ as well as to methoxy atom O^{i} of the 3-methoxysalicylate anion in the neighbouring structural unit [symmetry code: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$; Table 2]. The two-dimensional sheets are linked by very weak $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 4$ and $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 7$ intermolecular hydrogen bonds (Table 2). The additional interactions are $\pi-\pi$ stacking interactions (Janiak, 2000) between the two symmetry-related adjacent pyridine rings, $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5(\Phi)$ (at x, y, z and $2-x, 1$ $-y, 1-z$), of N, N-diethylnicotinamide molecules (Fig. 3) [centroid \cdots centroid distance $=3.76 \AA$, distance between the two planes is $3.55 \AA$].

The structure of (I) can be compared with other complexes having the general formula $\left[\mathrm{Cu} X_{2} \text { (denia) }\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$], where X is mefenamate (Melník et al., 1998), flufenamate (Melník et al., 1996), 2-chloronicotinate (Moncol et al., 2002) and 4-nitro-
benzoate (Hökelek et al., 1997). This class of compounds displays monomeric structures with axially elongated tetragonal bipyramidal geometry about each $\mathrm{Cu}^{\text {II }}$ atom of the $\mathrm{CuO}_{4} \mathrm{~N}_{2}$ chromophore, commensurate with Jahn-Teller distortion. The $\mathrm{Cu}-\mathrm{O}_{\mathrm{eq}}$ (O atom of carboxylate group), $\mathrm{Cu}-$ N_{eq} (N atom of pyridine ring of N, N-diethylnicotinamide) and $\mathrm{Cu}-\mathrm{O}_{\mathrm{ax}}$ (O atom of coordinated water) bonds are 1.936 (3), 2.027 (3) and 2.557 (3) \AA for mefenamate; 1.961 (2), 2.001 (2) and 2.449 (4) \AA for flufenamate; 1.965 (2), 2.015 (2) and 2.503 (2) A for 2-chloronicotinate; and 1.959 (2), 2.019 (2) and 2.485 (2) \AA for 4-nitrobenzoate. The corresponding bonds in (I) are consistent with these values.

The above-mentioned structures exhibit also a very similar hydrogen-bond system involving an intramolecular hydrogen bond of one water molecule H atom to a carboxylate O atom and an intermolecular bond of the other water molecule H atom to a neighbouring carboxamide O atom. Thus the uncoordinated water molecules within (I) have enriched the hydrogen-bond system.

Experimental

N, N-Diethylnicotinamide (2 mmol) was added to a stirred aqueous solution (20 ml) of copper(II) acetate (1 mmol). After several minutes, 3-methoxysalicylic acid (2 mmol) was added to the darkblue solution. The reaction mixture was stirred for 5 d ; after this time the light-green product was filtered off, washed with water and dried in air. Crystals of (I), suitable for X-ray analysis, were obtained from the mother liquor after slow room-temperature crystallization (yield $0.75 \mathrm{~g}, 91 \%$; m.p. $357.6-358.6 \mathrm{~K}$).

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=826.35$
Monoclinic, $P 2_{\circ} / c$
$a=8.544$ (2) \AA
$b=12.558$ (3) \AA
$c=18.617$ (5) \AA
$\beta=96.63$ (3) ${ }^{\circ}$
$V=1984.2(9) \AA^{3}$
$Z=2$

Data collection

Kuma KM-4 CCD diffractometer ω scans
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2003); analytical numeric absorption using a multifaceted crystal model based on expressions derived by Clark \& Reid (1995)]
$T_{\text {min }}=0.756, T_{\text {max }}=0.867$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0476 P)^{2}\right.} \\
&+0.2889 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.45 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.44 \mathrm{e}^{-3}
\end{aligned}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Cu}-\mathrm{O} 3$	$1.9821(9)$	$\mathrm{Cu}-\mathrm{O} 1$	$2.4169(10)$
$\mathrm{Cu}-\mathrm{N} 1$	$2.0191(10)$		
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{N} 1$	$89.74(4)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 1$	$92.84(3)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{O} 1$	$95.24(3)$		
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 6-\mathrm{O} 2$	$-178.12(10)$	$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$126.30(12)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6-\mathrm{O} 2$	$55.43(14)$	$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$-53.54(13)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 6-\mathrm{O} 2$	$-119.95(12)$	$\mathrm{C} 18-\mathrm{O} 6-\mathrm{C} 14-\mathrm{C} 13$	$-167.14(12)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{O} \cdots \mathrm{O} 4$	0.84	1.83	2.564 (1)	145
$\mathrm{O} 1-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O} 4$	0.84 (1)	2.01 (2)	2.803 (1)	157 (2)
O1-H1O \cdots O7	0.84 (1)	2.01 (2)	2.851 (1)	176 (2)
$\mathrm{O} 7-\mathrm{H} 3 \mathrm{O} \cdots{ }^{\text {a }}$	0.84 (2)	2.02 (1)	2.856 (1)	174 (2)
$\mathrm{O} 7-\mathrm{H} 4 \mathrm{O} \cdots \mathrm{Ob}^{\text {i }}$	0.84 (1)	2.20 (1)	2.961 (1)	151 (2)
$\mathrm{O} 7-\mathrm{H} 4 \mathrm{O} \cdots \mathrm{O}^{\text {i }}$	0.84 (1)	2.33 (2)	3.009 (1)	139 (2)
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 4^{\mathrm{ii}}$	0.95	2.51	3.444 (2)	167
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 7^{\text {ii }}$	0.95	2.39	3.298 (2)	159

Symmetry codes: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $-x+2,-y+1,-z+1$.
The water H atoms were located in a difference map and their positional parameters were refined, while their displacement parameters were fixed at $0.063 \AA^{2}$. The remaining H atoms were positioned with $\mathrm{O}-\mathrm{H}=0.84 \AA$ for hydroxyl H atoms and $\mathrm{C}-\mathrm{H}=0.95$, 0.98 and $0.99 \AA$ for aromatic and methine, methyl, and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C}, \mathrm{O})$, where $x=1.5$ for methyl and hydroxyl H atoms, and $x=1.2$ for all other H atoms.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

We thank the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of

Figure 3
The hydrogen bonds (dashed lines) and $\pi-\pi$ stacking interactions in the packing diagram of (I).

Sciences for financial support ($1 / 2452 / 05$) and Research and Development Support Agency for financial support (APVT-20-005504).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Hökelek, T., Budak, K. \& Necefoğlu, H. (1997). Acta Cryst. C53, 1049-1051. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Melník, M., Koman, M., Macášková, L. \& Głowiak, T. (1998). J. Coord. Chem. 44, 163-172.
Melník, M., Potočňák, I., Macášková, L., Mikloš, D. \& Holloway, C. E. (1996). Polyhedron, 15, 2159-2164.
Moncol, J., Palicová, M., Segl’a, P., Koman, M., Melník, M., Valko, M. \& Głowiak, T. (2002). Polyhedron, 21, 365-370.
Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Poland, Wroclaw, Poland.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

